MATHEMATICAL MODEL AND ANALYTICAL SOLUTION FOR THE VIBRATION OF INCLINED FLUID-TRANSPORTING SUBMARINE PIPELINES

Main Article Content

C An
T T Li
M L Duan
H B Huang

Abstract

Due to the complexity of submarine environments, the nature of the dynamic response of free-spanning submarine pipelines, particularly inclined pipelines, is unclear. This paper aims to theoretically analyze the vibration behaviors of inclined fluid-transporting free-spanning submarine pipelines in the deepwater area. The mathematical model for the vibration of inclined fluid-transporting pipelines is established considering the influence of gravity on vibration response, and a non-linear wake oscillator is employed to model the vortex shedding behind the pipeline free span. The partial differential equation system is solved through the generalized integral transform technique (GITT), which is an analytical or semi-analytical method. Parametric analysis are carried out to investigate the effects of the inclination on the dynamic response of fluid-transporting pipelines. It is found that the inclination of the free- spanning pipeline will radically alter the natural frequency of the structure, and consequently the VIV lock-in region. In addition, the slope of the seabed will cause a more significant internal flow effect. The thorough theoretical understanding of inclined fluid-transporting pipelines helps increase the design accuracy for pipelines installed on a seabed with a highly irregular topography.

Article Details

Section
Articles