THE INFLUENCE OF FORWARD SPEED AND NONLINEARITIES ON THE DYNAMIC BEHAVIOUR OF A CONTAINER SHIP IN REGULAR WAVES

Main Article Content

A Chapchap
D A Hudson
P Temarel
T M Ahmed
S E Hirdaris

Abstract

The aim of this paper is to compare the heave and pitch motions for the S175 containership, travelling in head regular waves, obtained from frequency domain linear and time domain partly nonlinear potential flow analyses. The frequency domain methods comprise the pulsating and the translating, pulsating Green’s function methods, with the relevant source distribution over the mean wetted surface of the hull. The time domain method uses the radiation and diffraction potentials related to the mean wetted surface, implemented using Impulse Response Functions (IRF), whilst the incident wave and restoring actions are evaluated on the instantaneous wetted surface. The calculations are carried out for a range of Froude numbers, and in the case of the partly nonlinear method for different wave steepness values. Comparisons are made with available experimental measurements. The discussion focuses on the necessity for a nonlinear approach for predicting the radiation potential and the possible numerical methods for its formulation.

Article Details

Section
Articles