VERTICAL AND SLOPED BANK EFFECTS ON DIFFERENT SHIP TYPES

Main Article Content

Dong-Taur Su

Abstract

This study employed computer design software to completely draft 3D ship models; then, computational fluid dynamics were used to establish numeric navigation channels and simulate fluid hydrodynamic analysis of ships navigating along shore banks. The parameters considered comprised bank type (vertical and sloped), ship model (two types), velocity, ship-to-bank distance, and navigation time. Figures and tables were used to present the distribution of ship stern eddy current, flow field pressure, and velocity, and the comparison of center of mass deviation, sway force, and yaw moment. Results showed that ships navigating along embankments and channels produced asymmetric flows, which draw the bow away from the shore. Larger ships are substantially more influenced by bank effects than smaller ships. Large sway forces and yaw moments are produced in large ships, drifting the bow away from the bank and the stern towards the bank, increasing the risk of collision with the embankment. From the study results, the characteristics of bank effects are understood and can be used for assisting the safe navigation of ships in restricted waters.

Article Details

Section
Articles