STATIC STABILITY OF AERODYNAMICALLY SUPPORTED PLATFORMS MOVING ABOVE WATER

Main Article Content

K I Matveev

Abstract

The motion stability is the most important problem of high-speed marine vehicles that utilize aerodynamic support. A simplified analysis and calculations of longitudinal static stability of several basic platforms moving above water are carried out in this study. The analysis is based on the extreme ground effect theory and the assumption of hydrostatic deformations of the water surface. Effects of the underlying surface type, Froude number, and several geometrical parameters on main aerodynamic characteristics, including the static stability margin, are presented. If the underlying surface is water instead of a rigid plane, the static stability worsens for platforms with flat or S-shaped lower surfaces, but it slightly improves for a horizontal platform with a flap. The static stability margin remains positive for S-shaped profiles at sufficiently low Froude numbers, while it is negative for other configurations.

Article Details

Section
Technical Notes