STRESS DISTRIBUTION IN THE HOLLOW STIFFENED HYBRID LAMINATED COMPOSITE PANELS IN SHIP STRUCTURES UNDER SINUSOIDAL LOADING
Main Article Content
Abstract
A simplified hollow stiffened hybrid laminated plate model has been developed for the marine structures. The detailed stress analysis through the thickness of the stiffened plate based on the higher order shear deformation theory has been carried out under sinusoidal loading. The hybrid laminates are made by wrapping the GFRP laminates with CFRP at the outermost layers of the stiffened panel. This hybridization technique can be an optimum solution from the point of view of cost reduction as well as enhancement of strength properties. The layer-wise stresses for the stiffened plate have been calculated in the present paper. A 3D polynomial curve fitting technique has been used to obtain higher accuracy and consistency in the computation of stresses. The computer code has been developed using MATLAB considering the plates as eight noded isoparametric plate bending element and the stiffener has been modeled as three noded isoparametric beam element. The stiffened panel has also been analysed using the ANSYS14.0 software package considering 2D model. The results obtained from the present formulation have been compared with those available in the published literature to validate the present formulation. The stiffened panels made of GFRP, CFRP and GFRP-CFRP hybrid laminates have been studied here. An extensive parametric study has been carried out with varying fibre content in the laminates.