AN EXPERIMENTAL STUDY ON THE RELATIVE MOTIONS BETWEEN A FLOATING HARBOUR TRANSHIPPER AND A FEEDER VESSEL IN REGULAR WAVES
Main Article Content
Abstract
The Floating Harbour Transhipper (FHT) is a pioneering logistics solution that was designed to meet the growing demands for coastal transhipment in the mining sector as well as commercial port operations. The primary advantage of the FHT system is that it can reduce transhipment delays caused by inclement weather, by reducing relative motions between the FHT and feeder vessel. The feeder is sheltered when inside the FHT well dock when compared to the more exposed location when a feeder is in a traditional side-by-side mooring arrangement.
This paper discusses previously published studies into the relative motions of vessels engaged in side-by-side mooring arrangements and also presents details and results from a series of physical scale model experiments. In these experiments, both side-by-side and aft well dock mooring arrangements are investigated. The results provide strong evidence that the FHT well dock concept can significantly reduce the heave, pitch and roll motions of feeder vessels when transhipping in open seas – this being the cornerstone of any successful open water transhipment operation.